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The concept of receptive field is a linear, feed-forward view of
visual signal processing. Frequently used models of V1 neurons,
like the dynamic linear filter static nonlinearity Poisson spike
encoder model, predict that receptive fields measured with differ-
ent stimulus ensembles should be similar. Here, we tested this
concept by comparing spatiotemporal maps of V1 neurons derived
from two very different, but commonly used, stimulus ensembles:
sparse noise and Hartley subspace stimuli. We found maps from
the two methods agreed for neurons in input layer 4C but were
very different for neurons in superficial layers of V1. Many layer 2/3
cells have receptive fields with multiple elongated subregions
when mapped with Hartley stimuli, but their spatial maps collapse
to only a single, less-elongated subregion when mapped with
sparse noise. Moreover, for upper layer V1 neurons, the preferred
orientation for Hartley maps is much closer to the preferred
orientation measured with drifting gratings than is the orientation
preference of sparse-noise maps. These results challenge the con-
cept of a stimulus-invariant receptive field and imply that intra-
cortical interactions shape fundamental properties of layer 2/3
neurons.

Hartley subspace � primary visual cortex � reverse correlation � sparse noise

The primary visual cortex (V1) has been studied as a way of
comprehending cortical function. One of the basic concepts

in studying V1 has been the receptive field, the region of visual
space from which a neuron’s response can be modulated (1).
There have been two opposing schools of thought about recep-
tive fields: (i) they can be explained in terms of a model of visual
cortical cells as a linear spatiotemporal filter, followed by a spike
encoding mechanism, a so-called dynamic linear filter static
nonlinearity Poisson spike encoder (LNP) model (reviewed in
ref. 2); or (ii) the visual cortex is so nonlinear that one obtains
different estimates when attempting to measure receptive fields
with different stimuli (3, 4). Our results imply that both schools
of thought may be correct in macaque primary visual cortex V1;
view i applies to cells in layer 4C, the V1 layer that receives most
thalamic input, whereas view ii applies to cells in V1’s output
layers (layers 2/3 and 5/6) that are heavily interconnected with
other cortical neurons.

There is a large diversity of visual properties across cell layers
in V1 (4–6), probably because of the variability of excitatory and
inhibitory inputs to different V1 neurons (revealed by intracel-
lular recordings; ref. 7) caused by specialized functional circuitry
in different macaque V1 layers (8–11). Previously, we reported
functional differences between V1 layers in temporal signal
processing (12). Here, we present results about profound dif-
ferences in the spatial processing of different stimulus ensembles
across V1 layers.

Spatiotemporal maps have been used to compare visual
neurons at different levels of the visual system (13) or V1 cells
in different cell layers (12, 14) or to study cortical development
(15) or V1 neurons in different species (16). One mapping
approach was initiated by Jones and Palmer (17) (cf. refs. 14, 15,
and 18), who used randomly positioned bright and dark spots and
cross-correlation (reverse correlation; refs. 19 and 20) to map
out the visual field regions that caused a cell to fire nerve

impulses. The spatial maps that they obtained were consistent
with the more qualitative maps obtained by Hubel and Wiesel
(1). Other techniques have been developed for mapping, such as
reverse correlation with spatiotemporal m-sequences (13, 21)
and subspace reverse correlation with a particular set of sinu-
soidal grating patches termed ‘‘Hartley stimuli’’ (16, 22, 23). The
Jones–Palmer method uses ‘‘sparse noise’’ that stimulates only a
small fraction of the visual field at any moment in time, whereas
the m-sequence and Hartley-subspace methods use ‘‘dense
noise’’ that activates signals from many parts of the visual field
simultaneously (21).

Frequently used models of V1 neurons, like the LNP model
discussed by Carandini et al. (2), predict that spatial maps
measured with sparse and dense noise should be the same. Our
main experimental result is that spatiotemporal maps obtained
from dense and sparse noise are similar for many layer 4C cells
but differ qualitatively for layer 2/3 (and layer 5/6) cells. There-
fore, the LNP model (2) cannot explain visual responses of
neurons in layer 2/3 (and even some layer 4C neurons; see ref.
24). A more elaborate model, LNP with a contrast gain control
(25, 26), also is not adequate. One must consider richer models
for V1, for instance recurrent, dynamical, nonlinear neuronal
networks. Some of these results were previously presented in
abstract form (42).

Results
We used a matrix of multiple independently moveable electrodes
to record simultaneously from several neurons in the primary
visual cortex of adult macaque monkeys. Near the end of each
experiment, electrodes were retracted along the electrode track,
and 3–4 electrolytic lesions (600–900 �m apart) were made (Fig.
1A). Laminar information for each recording site was assigned
through track reconstructions (5, 27, 28). At each recording site,
receptive fields were mapped first with Hartley stimuli (22) and
then with sparse noise (17). Spatiotemporal maps were estimated
by reverse correlation (Fig. 1B; refs. 17, 19, 20, and 22) as R(x,
y, �) � �r(t) S(x, y, t � �)�, where x and y represent the spatial
positions of pixels in the image, S(x, y, t) was the spatiotemporal
stimulus, and r(t) was the neuron’s spike train. A total of 205
well-isolated single units recorded from four macaque monkeys
were included in this study. For each cell, we calculated the
spatial map for a series of time delays (in 10-ms steps) between
stimulus and response. The spatiotemporal map R(x, y, �) for a
layer 4C cell is shown in Fig. 1C. Typically, for 0 � � � 30 ms the
spatiotemporal map is noise, then the spatial map emerges at
some time � where 40 � � � 100 ms. Fig. 1D Upper shows a short
segment of raw data from the layer 4C example cell recorded
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from a single quartz platinum/tungsten microelectrode (Thomas
Recording). The spike waveforms and principal components
analysis (Fig. 1D Lower) indicate that the layer 4C example
neuron was well isolated (see refs. 29–31).

We quantified the time course of the response by estimating
the map’s spatial variance, �xy

2 (�) � �[R(x, y ,�) � �R(x, y, �)�]2�x,y
as a function of time offset � (Fig. 1C and ref. 32). The time offset
at which the spatial variance reached its peak was called the peak
time, �peak, and used in subsequent data analysis. The signal/
noise ratio (SNR) was defined as the ratio ��xy

2 (�peak)�/�xy
2 (0)

between the map’s spatial variance averaged around the peak
time, ��xy

2 (�peak)� (defined as the mean variance between �peak �
20 ms and �peak � 20 ms), and the spatial variance at time offset
� � 0, �xy

2 (0). ��xy
2 (�peak)� is the maximal spatial variance evoked

by the stimulus, whereas �xy
2 (0) is response variance caused by

noise in the neuron’s activity. The criterion for a cell having a
‘‘mappable’’ Hartley receptive field was SNR � 1.8 (n � 81/205).

The Hartley subspace map and the sparse-noise map were fitted
with 2D Gabor functions (refs. 33 and 34; see SI Text) to extract
neural response properties including the preferred-orientation axis
and the number of subregions. We also measured for each cell the
orientation tuning curve and the modulation ratio (the ratio
between the first harmonic amplitude and the mean firing rate,
f1/f0) with drifting sinusoidal grating stimuli, and sorted cells into
simple (f1/f0 � 1) and complex (f1/f0 � 1) groups (see Fig. S1) for
comparison with previous work.

Laminar Differences in Spatiotemporal Maps: Examples. Receptive
fields measured with different mapping techniques were highly
similar for layer 4C cells but not for cells in other V1 layers (Fig.
2). Maps at the time of peak response (�peak) were chosen to
compare results obtained with the two techniques. Fig. 2 shows
typical examples of the receptive fields of three layer 4C and
three layer 2/3 cells (Ex1 and Ex 2: simple; Ex3: complex, based
on f1/f0 ratio). Spatial maps are represented as color maps in Fig.
2: on subregions are represented in red and off subregions are
in blue.

Similarity of Spatiotemporal Maps: Receptive-Field Similarity Index
(RFS). To analyze the entire population of V1 cells we calculated
a RFS by computing the spatial correlation between the Hartley
subspace map and the sparse-noise map (3, 4):

Fig. 1. Mapping with Hartley stimuli and sparse noise and histological labeling of cell layers in V1. (A) A 50-�m cytochrome oxidase-stained brain section with multiple
lesions (indicated by arrows) made along 2 recording tracks with quartz platinum/tungsten microelectrodes. (B) The spatiotemporal receptive fields were mapped with
Hartley subspace stimuli and sparse noise and calculated by reverse correlation at different time delays (�). (C) The spatial maps (Upper) and spatial variances (Lower)
as a function of time for an example layer 4C simple cell (the yellow dot in A represents the place where the cell was recorded). The spatial maps were normalized by
the response at the time when the spatial variance reached the peak. On subregions are shown in red (positive values), and off subregions are in blue (negative values).
(D) A short segment of raw data (Upper) for the example layer 4C cell. For spike sorting, we first included waveforms with peaks �0.5 mV and then aligned them at
their peaks at 0.25 ms to perform a principal components analysis. (Lower Left) Subsamples of waveforms from a 360-s segment (red: sorted spikes; black: noise). (Lower
Right)Ascatterplotofthedotproductofeachwaveformwiththefirstandsecondprincipalcomponents (PC1andPC2)ofanaveragewaveformfromthe360-s segment.

Fig. 2. Example spatial maps of V1 cells in layer 4C and layer 2/3. (A) Two
simple cells and one complex cell in layer 4C. (B) Two simple cells and one
complex cell in layer 2/3. For each example, the Hartley subspace maps are
drawn at the top and the sparse-noise maps at the bottom. Spatial maps are
shown as color maps (grid size: 0.2°) in which on subregions are represented
in red and off subregions are in blue. The SNRs for these six cells from different
layers are as follows. For layer 4C: Ex1, Hartley 11.65, sparse 11.34; Ex2, Hartley
4.43, sparse 7.16; Ex3, Hartley 2.14, sparse 2.15. For layer 2/3: Ex1, Hartley 3.47,
sparse 10.61; Ex2, Hartley 5.40, sparse 5.81; Ex3, Hartley 2.53, sparse 5.83.
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RFS �

�
x,y

RF subspace�x , y	 �RF sparse-noise�x , y	

��
x,y

RF subspace
2 �x , y	 ��

x,y

RF sparse-noise
2 �x , y	

[1]

RFS � 1 if the two maps are exactly identical, RFS � 0 if the two
maps are orthogonal to each other, and RFS � �1 if one map
is spatially the same shape but opposite polarity from the other.
Note that we calculated the ‘‘maximum’’ spatial correlation
between two maps over all x,y displacements to overcome the
possible effect on the correlation coefficient of small displace-
ments of the maps (possibly caused by eye movements; see SI
Text and Fig. S2 for details; also see ref. 35).

To get an intuition for the RFS index, consider the examples
in Fig. 2. The subspace and sparse-noise maps of the first layer
4C example (Fig. 2A Left) have the same number of segregated
on and off subregions. In this case RFS � 0.91. The two maps
for the second and third layer 4C examples (Fig. 2 A Center and
Right) are also very similar with RFS � 0.74 and 0.90, respec-
tively. RFS is generally lower for upper layer cells. For the three
layer 2/3 examples in Fig. 2B, the subspace maps resemble those
of layer 4C in having multiple segregated and elongated on and
off subregions, but the sparse-noise maps reveal only a single
subregion. The mismatches of the two maps result in lower RFS
values: 0.27, 0.34, and 0.38 for the three examples from layer 2/3
given in Fig. 2B.

Studying the RFS indices for a population of 81 cells with
significant subspace maps (SNR �1.8) reveals important func-
tional differences between V1 layers (Fig. 3). Cells were classi-
fied as simple (n � 29) or complex (n � 52) based on their
responses to drifting gratings (f1/f0 ratio). When only simple

cells were considered (Fig. 3A), the average RFS, �RFS�, of layer
4C simple cells (�RFS� � 0.70 
 0.17, n � 10) was approximately
twice as big as the �RFS� of layer 2/3 simple cells (�RFS� � 0.35 

0.16, n � 11, P � 0.0014, Wilcoxon rank sum test) and layer 5/6
simple cells (�RFS� � 0.31 
 0.10, n � 4, P � 0.007, Wilcoxon
rank sum test). The frequency distributions of RFS also reveal
interlaminar differences (Fig. 3A Right). Low RFS cells are
uncommon in layer 4C, whereas a large fraction of such ‘‘mis-
matched’’ cells are found in layers 2/3 and 5/6. Note that the
subspace maps of many simple cells in layers 2/3 and 5/6 also have
multiple elongated and segregated on/off subregions (see Fig.
S1).

There is little interlaminar difference in �RFS� for mappable
complex cells (Fig. 3B). In all layers the subspace and sparse-
noise maps of mappable complex cells were different in shape;
therefore, most complex cells had low RFS values. The �RFS� of
layer 4C complex cells (�RFS� � 0.50 
 0.23, n � 13) was not
significantly different from those of layer 2/3 cells (�RFS� �
0.42 
 0.16, n � 17, P � 0.44, Wilcoxon rank sum test) and from
those of layer 5/6 cells (�RFS� � 0.38 
 0.10, n � 6, P � 0.25,
Wilcoxon rank sum test). Also note that layer 4C simple cells had
significantly higher �RFS� than layer 4C complex cells (P � 0.03,
Wilcoxon rank sum test).

Laminar Differences in Spatiotemporal Maps: Preferred Orientations.
We also compared the axes of preferred orientations predicted
from the best-fitting 2D Gabor functions for the two spatial
maps. There were significant laminar differences in the agree-
ment of predicted preferred orientations. For example, for the
three 4C cell examples in Fig. 2A the differences in preferred
orientation (��) were 2.43°, 1.88°, and 4.48°. However, the three
layer 2/3 cells used as examples in Fig. 2B had relatively large
differences in preferred-orientation axis (�� � 47.44°, 20.15°,
and 11.60°).

The population analysis of predicted preferred orientations
bears out the results shown in the examples (Fig. 4). There was
much less agreement in preferred-orientation axes predicted
from the subspace and sparse-noise maps for cells in layer 2/3
(Fig. 4A Left) than for cells in layer 4C (Fig. 4A Right). The
population-average difference between the two predicted axes
was significantly larger for layer 2/3 cells than for layer 4C cells
(layer 2/3: ���� � 27.19° 
 18.50°; layer 4C: ���� � 15.08° 

22.26°, P � 0.0016, Wilcoxon rank sum test).

Which map’s predicted orientation preference agrees better
with the orientation preference measured directly with drifting
gratings? Fig. 4 B and C answers this question. Fig. 4 B and C
shows scatter plots of preferred-orientation axis measured with
drifting gratings versus that predicted from the sparse-noise map
(Fig. 4B) and the subspace map (Fig. 4C) for both layer 2/3 (Left)
and layer 4C cells (Right). In layer 2/3, the orientation-preference
mismatches from the sparse-noise map were significantly larger
than those from the subspace map (sparse noise: ���� � 34.20°

 26.86°; subspace: ���� � 16.03° 
 15.63°, P � 0.0001, Wilcoxon
signed rank test). The mismatches were smaller and not signif-
icantly different in layer 4C (sparse noise: ���� � 20.81° 
 19.84°;
subspace: ���� � 15.51° 
 13.20°, P � 0.10, Wilcoxon signed
rank test).

SNRs for Subspace vs. Sparse-Noise Maps: Correlations. Further
evidence for the mismatch of the subspace and the sparse-noise
maps in layer 2/3 cells, and the similarity of the spatial maps in
layer 4C cells, comes from the comparison of SNR: ��xy

2 (�peak)� /
�xy

2 (0). Both kinds of mapping stimuli drove cortical cells very
well. On average across the population of mappable cells, for
sparse noise SNR � 4.49 
 6.03, whereas for Hartley stimuli
SNR � 3.66 
 2.80. The SNRs for the two different mapping
stimuli were highly correlated for layer 4C cells (Fig. 5B; r � 0.87,
P � 0.0001) but not for layer 2/3 cells (Fig. 5A; r � 0.27, P �

Fig. 3. RFSs between subspace and sparse-noise maps across V1. (A) RFS of
29 simple cells (f1/f0 � 1) with significant subspace maps (n � 11 in layer 2/3,
4 in layer 4A/B, 10 in layer 4C, 4 in layer 5/6), plotted verses relative cortical
depth. The similarity index is equal to 1 if the two receptive fields are identical
(see Eq. 1). (Left) Similarity indices of cells in different layers of V1. (Right)
Histograms of the similarity indices for simple cells assigned to different layers
of V1. (B) RFSs for complex cells (f1/f0 � 1): individual data points (Left) and
histograms (Right) versus depth in V1.
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0.16). Furthermore, the SNRs of individual neurons from the
two stimuli are comparable in layer 4C (Hartley: 4.85 
 4.29;
sparse noise: 6.97 
 9.29. P � 0.10, Wilcoxon signed rank test),
but the sparse-noise SNR is slightly larger than the Hartley
stimuli SNR in layer 2/3 (Hartley: 2.79 
 0.90; sparse noise:
4.85 
 4.29, P � 0.02, Wilcoxon signed rank test). Therefore,
sparse noise can drive both layer 4C and layer 2/3 cells equally
well (P � 0.26, Wilcoxon rank sum test).

Discussion
Subspace Stimuli and Sparse Noise Generate Different Maps in V1.
The RFS between the subspace maps and the sparse-noise maps
was significantly lower for layer 2/3 simple cells than for layer 4C
simple cells (Fig. 3A). Many layer 2/3 simple cells had maps
consisting of multiple segregated and elongated on and off
subregions when mapped with Hartley subspace stimuli, but only
a single subregion when mapped with sparse noise (Fig. 2).
Furthermore, for layer 2/3 neurons the Hartley subspace maps
predict more accurately than the sparse-noise maps the pre-

ferred orientation measured with drifting gratings (Fig. 4 B and
C; cf. ref. 36).

The mismatch in the spatial maps for neurons in the layer 2/3
of V1 might be because the two stimulus ensembles activate the
cortical network differently. Sparse noise (17) consisted of
randomly positioned dark and bright spots that appeared one at
a time briefly in the visual field, and for most of the time the
modulation of each pixel around the mean level was zero
(meaning the pixel’s luminance was equal to the background
luminance). However, Hartley subspace stimuli (22) consisted of
a series of sinusoidal gratings that covered a relatively larger
region of visual space, and for most of the time the modulation
of each pixel of the Hartley stimuli was nonzero (the pixel’s
luminance was either higher or lower than the background
luminance). Therefore, it is possible that Hartley stimuli may
activate more cortical neurons (both excitatory and inhibitory)
at a given moment and may be more useful for characterizing the
first-order spatiotemporal map in a network that has nonlinear
spatial interactions (21) than sparse noise. However, the mis-
match in layer 2/3 neurons is unlikely to be caused by a simple
threshold nonlinearity because we found that sparse noise could
drive both layer 4C and layer 2/3 neurons equally well. The SNRs
of layer 4C and layer 2/3 neurons under sparse-noise mapping
were not significantly different (Fig. 5), indicating that sparse
noise could evoke strong suprathreshold responses and provide
clear spatial maps for layer 2/3 neurons.

Fig. 4. Comparisons of preferred-orientation axes predicted from two
different maps and measured with drifting gratings. (A) Scatter plots of
preferred-orientation axes predicted from the subspace map and the sparse-
noise map for neurons in layer 2/3 (Left) and layer 4C (Right) of V1. (B) Scatter
plots of preferred-orientation axes measured with drifting gratings and pre-
dicted from the sparse-noise map for layer 2/3 cells (Left) and layer 4C cells
(Right). (C) Scatter plots of preferred-orientation axes measured with drifting
gratings and predicted from the subspace map for layer 2/3 cells (Left) and
layer 4C cells (Right). The unity line represents where the values from the two
parameters are equal. (Insets) Shown are histograms of ��, the difference in
preferred-orientation axis between the two parameters.

Fig. 5. SNRs for subspace maps and sparse-noise maps for layer 4C and layer
2/3 cells. SNR is a measurement of how strongly the mapping stimulus drives
the neural response compared with the same neurons’ intrinsic noise [defined
as ��xy

2 (�peak)�/�xy
2 (0)]. The SNRs of subspace and sparse-noise maps for layer 4C

cells are highly correlated. However, there is no correlation for layer 2/3 cells.
(A) A scatter plot of SNRs from subspace maps and sparse-noise maps for layer
2/3 cells. (B) A scatter plot for layer 4C cells reveals a much higher correlation
between the SNRs.
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Our results support the idea that V1 cells, even simple cells
(f1/f0 � 1), can be highly nonlinear and therefore, as suggested
previously, estimates of a neuron’s spatial sensitivity may depend
strongly on the visual stimuli used (3, 4). Victor et al. (4) used
2D Hermite functions to map V1 neurons and found 73% of
them (n � 37/51) had RFS significantly deviated from 1 for
visual responses maps from different Hermite basis functions.
However, the RFS values we obtained in layer 2/3 neurons
(mean � 0.39) were much lower than reported by Victor et al.
(ref. 4; mean RFS � 0.76), indicating that the spatial maps
obtained with dense and sparse noises were much more different
in shape. Moreover, our results provide evidence that the
percentage of neurons with unmatched spatial maps (RFS �0.5)
depends on which V1 layer the cells are in; the fraction of
neurons with unmatched maps was 30% for layer 4C cells (n �
7/23) but 79% for layer 2/3 (n � 22/28) and 90% for layer 5/6 cells
(n � 9/10).

A previous study reported that 59% of V1 neurons (n � 26/44)
in awake monkeys had different spatial response functions
(RFS � 0.5) when mapped with subspace stimuli and natural
scenes (3). David et al.’s proposal (3) was that natural scene
statistics are so different from those of white-noise-like patterns,
and the cortex is so nonlinear, that spatial maps measured with
one stimulus set cannot predict what one will measure with the
other. However, their results did not take into account the
possibility that eye movements could have degraded their esti-
mated RFS. As we show in Fig. S2, translations of spatial maps
caused by eye movements can lower RFS significantly even in the
anesthetized animal where we minimized eye movements with
eye rings (see SI Text), and the effect of eye movements could
be even bigger in awake animals (35). Published examples of
maps measured with natural images appear similar to white-
noise maps (figure 7 of ref. 3, figure 4 of ref. 37, and figure 1 of
ref. 38). The very large dissimilarity in spatial maps measured
with sparse and dense noise, in output layer neurons, appears to
be larger than what one sees in the natural scene examples. It is
worth reinvestigating what the actual differences are between
spatial maps measured with natural scenes versus white noise
and how they depend on laminar location.

Simple Receptive Fields Found Outside of Layer 4C. One outstanding
question regarding V1 organization is whether simple cells are
found only in the geniculo-recipient layers of V1. The classic
feed-forward model proposes that the receptive field of a simple
cell consists of multiple segregated and elongated on and off
subregions (1, 39). Studies that used either hand-mapping or reverse
correlation with sparse noise reported that simple cells were found
mostly or exclusively in the input layers of cat V1 (14, 40).

In this study, using drifting gratings and Hartley subspace
mapping, we found a significant number of cells with a high
modulation ratio (f1/f0 � 1) for drifting gratings, with multiple
segregated and parallel on/off subregions (Fig. 2 and Fig. S1)
under Hartley mapping, outside of the input layer 4C (12). The
apparent disagreement with earlier findings (14, 40) is likely
caused by the discrepancies, in layer 2/3 and layer 5/6 neurons,
between the responses to different stimulus ensembles (also see
ref. 43). When only sparse noise is used, our results in monkey
V1 agree with previous results in cat V1 (14, 40) that cells with
multiple on/off subregions are predominantly found in the input
layers. Simple cells in layer 4C and layer 2/3 are similar in being
sensitive to the spatial phase of flashed stimuli (12), whereas
complex cells in both input and output layers are insensitive to
phase (but see ref. 41).

Implications for V1 Models. Models of V1 neurons that are quasi-
linear, like the LNP model (reviewed in ref. 2) predict that
similar spatial maps should be measured by cross-correlation
with sparse and dense noise (21, 22). Our present results indicate

that such a model could approximate the responses of some V1
cells in layer 4C with high RFS values. However, for other 4C
cells, and most cells outside of layer 4C, the spatiotemporal maps
were very dissimilar depending on the visual stimulus ensemble
used for mapping. Therefore, the neuronal network that drives
most neurons in layer 2/3 and even some layer 4C cells is
qualitatively different from the LNP model (2). A more elabo-
rate model of V1 neuronal networks as LNP devices with
contrast gain controls (25, 26) will not account for our results
either, because in present-generation contrast gain control mod-
els the nonlinear feedback scales the contrast gain but has no
effect on the spatial map. One must consider richer models for
V1, for instance recurrent, dynamical, nonlinear neuronal net-
works in which excitatory and inhibitory feedback has a spatial
structure that can modify the shape of a neuron’s spatiotemporal
map (3, 4).

Our results suggest that the classical concept of a receptive
field (1) is of limited utility for most neurons in V1 especially the
cells in the output layers that send signals to other areas of the
brain, because the spatial map changes radically when different
mapping stimuli are used (Figs. 2 and 3). The maps obtained with
sparse noise stimuli are automated versions of the classical
receptive field maps obtained with flashing spots, but these
sparse-noise maps do not predict orientation preference accu-
rately for most output layer neurons (Fig. 4). Therefore, V1
cortex can teach an important lesson about cortical function in
general; intracortical interaction plays an important role in
shaping response properties of neurons.

Materials and Methods
Methods are described briefly here and shown in detail in SI Text.

Surgery and Preparation. Acute experiments were performed on four adult
Old World monkeys (Macaca fascicularis). A small craniotomy was made in one
hemisphere posterior to the lunate sulcus to provide access for the multielec-
trode matrix. The animal was maintained on opioid anesthetic (sufentanil
citrate, 6–12 �g per kg�h�1, i.v.) and paralyzed with pancuronium bromide (0.1
mg per kg�h�1, i.v.). All vital signs were closely monitored and maintained
throughout the experiment.

Receptive Field Mapping. We used a matrix of seven independently moveable
electrodes (Thomas Recording) to simultaneously record from multiple V1 neu-
rons. Both Hartley subspace stimuli and sparse noise were used to map spatio-
temporal receptive fields by reverse correlation (17, 22). The subspace stimuli
were derived from a low-pass subset of the 2D Hartley functions that consisted of
an orthogonal set of stationary sinusoidal gratings (2.4° � 2.4°) with evenly
spaced orientations, spatial phases (n � 4) and spatial frequencies (0.6–8.0
cycles/° in visual angle). Each subspace image appeared for 20 ms, and the entire
sequence lasted 15 min (a total of 1,052 images, each image presented 42
times). The sparse noise consisted of a sequence of randomly positioned (on a
12 � 12 sample grid) dark and bright squares (0.2° � 0.2°) against a gray
background (luminance: 59 cd/m2). The luminances of bright and dark squares
were adjusted so that contrasts from the light increment (luminance: 107 cd/m2)
and light decrement (luminance: 11 cd/m2) were equal. Each sparse-noise image
(a single dark or bright square) appeared for 40 or 50 ms, and the entire sequence
lasted 14 or 18 min (a total of 288 images, each image presented 72 times).

Histology. Cells were assigned to different layers of V1 based on the results of
track reconstruction (27). Along each track, we recorded the depths of every
recording site during the experiment, and then made 3–4 electrolytic lesions
at 600- to 900-�m intervals at the end of the experiment. A lesion was made
by passing a 3-�A direct current for 2 s through the quartz platinum/tungsten
microelectrodes (Thomas Recording) with a stimulus generator (ALA Scientific
Instruments; model number STG-1001).
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